
Report No. 89004

0

6 ROYAL SIGNALS AND RADAR ESTABLISHMENT,
z MALVERN

0

CODTIC

CV) AUG 0 71989
0

04.

PATTERN MATCHING IN ML:
O A CASE STUDY IN REFINEMENT

Authors: R Macdonald, G P Randell, C T Sennett

I :'-* --" AE..Nr A I

Z. -1,90

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

RSRE
Malvern, Worcestershire.

May 1989

CONDITIOtIS OF RELEASE

0044195 BR- 10583

.... ... * ... U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

. I I I I II I I II ll II I I II III III I I I I II -

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 89004

Title: Pattern matching in ML: a case study in refinement

Authors: R Macdonald, G P Randell, C T Sennett

Date: May 1989

Summary

This report is a case study in data refinement, that is the process of taking a formal
specification written in terms of abstract values and converting it into a concrete
form suitable for implementation. The case study takes a non-trivial problem,
namely pattern matching in the language ML, and presents the refinement process
and proof obligations incurred concluding with an implementation in Algol68. The
report concludes with a discussion of the strengths and weaknesses of the formal
development process.

ACr._.,j 0 ,, For

NTIS CRz&I

i U -:, :',;:: d []
Copyright "

I ~I---

Controller HMSO London ...
1989

:!,11it Codes
I -..-

/ .wUi r

I' Il

Contents

1 Introduction I

2 Z specification of the problem 4

2.1 Specification of ML values and types 4

2.2 Specification of ML patterns and pattern matching 7

2.3 The compatibility of types and patterns 9

2.4 The compiling operations 10

3 Formal implementation - the abstraction invariant 13

4 The refined operations 18

4.1 The initial operation 18

4.2 The checking operation 19

4.3 The final operation 23

5 Abstract algorithm design 24

5.1 The coverage functior 24

5.2 The union function 26

6 Proof opportunities 37

6.1 Proofs for the coverage function 37

6.2 Proofs for the union function 41

7 The implementation 44

8 Conclusions 51

References 54

1 Introduction

The trustworthiness of high integrity software is established by demonstrating that
the software satisfies its specification. For certified software, the demonstration
will be directed towards an independent evaluator who has to judge whether the
software possesses the properties claimed for it. When the demonstration involves
the use of formal methods the term refinement is used, standing for the process of
producing the implementation in such a way that formal proof of satisfaction could
be given. Consequently, refinement is an important technique for the production of
software to the higher levels of assurance.

Refinement is usually associated with the final stages of producing an
implementation. This arises from the need to use simple examples when explaining
the concept, which are consequently rather close to the implementation language
chosen. Most specifications are far removed from implementation languages, so the
first steps of formal design will nearly always involve refining the specification.
These steps may be carried out within the specification language itself and
represent the major part of the creative design. Refinement is not an automatic
method for the generation of an implementation from a specification and a key issue
in its use is the extent to which it actually helps an implementor to produce
trustworthy software. Another key issue is the extent to which the formality can help
in demonstrating trustworthiness. In principle a formal proof forms a convincing
argument but the details of the formalism may obscure the understanding of what is
being proved. By hiding detail and automatically checking proof steps, tools could
assist the process but with current technology the degree to which a proof helps
rather than hinders the evaluation is an open question. The purpose of this report is to
discuss these issues within the context of a realistic case study.

Section 2 presents a formal specification of the problem, which is concerned with
pattern matching in the programming language ML. This is a problem which is
interesting in its own right, but the formal refinement has a number of surprises
which demonstrate the power of the method over the use of an intuitive approach.

Sections 3 to 5 deal with the formal development of the design specification.
Section 3 deals with the choice of representation for the implementation. For the
refinement method, the relationship between the the entities in the abstract
specification and those in the concrete implementation must be given and this is
known as the abstraction invariant. Given this, the constraints on the
implementation functions can actually be calculated, and this is done in section 4.
With these in mind, section 5 deals with the design of the implementation
algorithms at an abstract level which ensures that they are compatible with the
specification. It is this aspect of abstract algorithm design where refinement has
most to offer the implementor as opposed to the evaluator.

Section 6 covers the evaluator's requirements. It discusses the type of proof document
which would illuminate the discussion rather than obscuring it and gives an example

of the way in which the salient features of the proof requirements could be
displayed.

Section 7 provides an implementation of the problem in Algol68 which may be
compared with the formal design specification.

Finally section 8 discusses the advantages and disadvantages of the formal approach
and gives recommendations for current practice.

As some readers may not be familiar with ML the remainder of this introduction
describes the pattern matching features of the language. ML was produced as a
spin-off from the theorem proving system LCF [Gordon et al 1979, Paulson 19871. In the
latter, theorems, proof rules, tactics and so on are manipulated by means of an
interactive meta language. As the ideas for this crystallised it was realised that the
best meta language was in fact a programming language enriched with a
polymorphic type discipline and exception handling. The language could be used
quite generally in a similar manner to Lisp. The LCF idea produced a number of
offspring, and varying dialects of ML began to appear. As a result, Milner convened
the ML community with a view to developing a standard [Harper et al 1988]. The new
language is larger and more powerful than its predecessors and is interesting in its
own right, quite apart from it.; exciting use with theorem proving.

An attractive feature of the language is the use of pattern matching in the specification
of functions. In ML, a function may be supplied as a series of clauses, each clause
specifying how values of a certain structure are to be handled by the function as a
whole. This is best illustrated by means of an example, for which the ML concepts
of datatypes, patterns and pattern matching will be needed.

The ML datatype declaration is similar to a disjoint union and is a generalisation of
the idea of an enumerated type in Pascal. The simplest datatype declarations take
the form

datatype colour = red I blue I green

which declares colour as a type containing the three values red, blue and green. More
usually, the datatype is constructed from previously defined types, as in the
following declaration:

datatype label = code of colour I number of int*int I name of string

Thus a label value is constructed either from a colour, a pair of integers or a string.
Instead of being constants as in the previous example, code, number and name are
constructor functions which construct values having type label. So
code(red), number(], 2) and name 'fred" would all be values of type label.

An ML pattern is either a variable, an expression involving constants, constructor
functions and variables or is a tuple of patterns. Thus, given variables x, i, j, then x,

2

number(i, j) and code(red) are all patterns. A pattern matches a set of values. A
variable will match any value, but tuple patterns and patterns involving constructors
only match values which have the corresponding structure. Thus x matches any value,
number(i, j) matches any label value constructed from two integers and code(red)
matches the single value it denotes.

A simple example of a function declared as a series of clauses is one which
permutes the colours:

fun colourperm red = blue
I colour_perm blue = green
I colourperm green = red

This is both clearer and more concise than the corresponding expression involving
conditionals. However, this expressiveness has been bought at the cost of some
additional complexity in an ML compiler because it is necessary to check that the
patterns supplied in the parameter position account for all the possible values to
which the function might be applied. Thus colourfperm is a function from colour to
colour, but if the last clause of its definition had been omitted it would only have
been applicable to red and blue values. Consequently, it is a requirement on ML
compilers that they should be able to check whether a set of patterns is exhaustive, that
is, the patterns match every possible value belonging to a type. A related problem is
that the addition of a clause to a function may be redundant, that is, it may not increase
the number of values already matched. In this case the clause is superfluous and the
programmer has made a mistake.

The two tests required are intuitively obvious in the simple case above, but when
constructor functions and tuple values are considered, intuition can be misleading. In
this case the formal specification is particularly helpful and it is presented here
using the specification language Z [Sufrin 1983, Hayes 1987, Spivey 1988].

Notation: Sections 2 to 6 of this report are Z documents each of which has been
mechanically type-checked. The conclusion of each document is marked by a
"keeps" statement which lists the identifiers exported by the document. A document
is imported into another one by including the document name, which is distinguished
by having a box drawn round it.

I i ~ e a i iln

2 Z specification of the problem

2.1 Specification of ML values and types

The specification is defined in terms of the operations a compiler must perform to
carry out the test. A single pass of compilation is envisaged, so three operations are
defined, an initial operation used to specify the compiler's action on encountering the
first pattern of the clausal function, a testing operation to specify the action required
on encountering the subsequent patterns and a final operation to test whether the set
of patterns is exhaustive. The parameters for the second operation are the new
pattern just compiled and the set of values matched by the patterns obtained from
the other clauses of the function (the other patterns in the match, in ML terms). The
check to be made is whether the set of values matched increased as a result of
adding the latest pattern, in which case the match is not redundant. For the third
operation, the parameter is the set of values accounted for by all the patterns in the
match, and the test is whether this is all the values belonging to the type, in which
case the set of patterns is exhaustive.

The problem is defined in terms of ML values so it is necessary to build a Z
representation of them. In this a number of significant simplifications may be made.
First of all, the treatment of the special constants (denotations for integers, reals and
strings) is the same for each type of constant, so they are all represented together by
the Z given set SCONST. Secondly, function values may only be matched by
variables, which by definition are exhaustive. As the test is trivial in this case,
function values are not considered further (they may be considered as being
members of SCONST). Thirdly, the compiler's representation of constructors is
irrelevant to the specification of the problem, so the constructors are simply
introduced as a given set CON. Fourthly, the ML record type will simply be treated as
though it were the corresponding tuple. Finally, polytypes will be ignored. A
polymorphic match will be exhaustive or redundant at each and every instance of its
type, so the problem is independent of the polymorphism.

With these simplifications, an ML value is either the special ML void or unit value
or is drawn from the set of special constants or is a construction or a tuple of values.
For the Z representation, a labelled, disjoint union will be used, but as the definition
is recursive, Value is introduced as a given set. Thus values will be built up from the
following given sets:

[Value, SCONST, CON]

An exhaustive set of patterns is one which matches every value of a given type and
so the next step is to define what is meant by a type. The types are introduced as
disjoint subsets of the values, with the actual type structure being given by
constraints to be added later:

Type: P P Value

U Type = Value
V TI , T2 : Type I T, * T2 * T] ", T2 = 0

A constructed value is built from a constructor and a value for the parameter. The
parameter value must be drawn from a specific type which was associated with the
constructor in the datatype declaration. This association can be represented by the
following (unspecified) function:

typeof con . CON --> Type

Constructed values may now be described in terms of the following schema:
Cons val-I

con: CON; val Value

val E type of con(con)

A constructor which is a constant will be treated as having the unit value as a
parameter.

Tuples will simply be represented as sequences of two or more values. Tuples of
patterns will also be required so it is helpful to make the generic definition:

[T]

ruple T == {s : seq T l #s > 1}

With these definitions, the structure of values may now be represented by

Value :. = unitv I sconstv ((SCONST)) I consv ((Cons_val)) I tupv ((tuple Value))

Given this simplified model of the values, the type structure is detcrmined only by
the constructors and tuples. The contribution a constructor makes to a type is
represented by the set of constructors making up the datatype declaration. This is
determined for each constructor and available to the compiler, so it is possible to
presume the existence of the function below:

datatype "CON -4 P CON

V cs1, cs2 : ran datarpe • cs, = cs 2 v cs) n cs 2 =0

The constraint in this partial specification ensures that the range of datatype partitions
the set of constructors.

5

The values making up a type all possess the same structure determined by whether
the values are tuples or constructed. A relation sametype on the values will be defined
which specifies this property. The definition will be given by cases according to the
structure of Value, and as it is recursive, the signature is given first:

same type : Value <-- Value

For the primitive values, unitv forms a type on its own and all the special constants
r- considered to form one type. This is expressed by the schema:

Primitive
v, w: Value

v = uni-V A w = Univ
V

v E ran sconstv A w e ran sconstv

Two constructed values have the same type if the constructors are drawn from one
constructor set in the range of datatype:[Constructions

v, w : Value

v E ran consv A w E ran consv

datatype (consv-t v).con = datatmpe (consv- i w).con

As a consequence of this it is possible to deduce the set of constructors associated
with a constructed type:

Constructurs == X ty : Type I ty c ran consv• {v " ty ° (consv- 1 v).con}

Finally, tuple values have the same type if they are the same length and the
corresponding values have the same type:

Tuples
v, w : Value

v E ran tupv A w C ran tupv
#vs = #ws

V i I .. #vs • (vs i)sametype(ws i)
where

Vs == tuPV-1 V

WS == tzqV - 1 w

As a tuple type is made up of values of the same tuple length it is possible to define
a Size functi-'- to deliver it:

S,- == ry :Type
ty ran tupv
•± n v (v :up [-yi. n = #v). n

The definition of same type may now be completed as

V v, w : Value - v sametype w 40 Primitive v Constructions v Tuples

The set of types is simply the set of equivalence classes of sametype:

V ty .- Type V V P v2 ' ty * v1 same type v2

Consequently, it is possible to deduce the type of a value:

rpeof== X v : Value {w : Value I w same-type v}

2.2 Specification of ML patterns and pattern matching

Pattern- are formed in a similar way to values, except that one of the primitive
patterns is a variable which matches any value. As with values, simplifications will
be made: the ML layered pattern feature will be ignored and the wild card treated as
a variable. For this problem it is not necessary to know the representation of
variables, so they are introduced as a given set along with Pattern itself, introduced for
the purposes of the recursive definition:

[Pattern, Variable]

Constructed patterns may be formed using the following schema:

Cons.patta

con • CON; part .Pattern

Using this, the structure of patterns is given by

Pattern = unirp I sconstp ((SCONST)> var ((Variable>) I consp ((Cons_patt))
I tupp ((tuple Pattern))

The definition of pattern matching is given in terms of a relation, matches, specifying
which values match a givcn pattern:

matches : Pattern *- Value

This will be defined recursively over the structure of patterns and values. For the

special constants a simplification will be made. The set of special constants is
infinite an can never be matched by a finite set of patterns unless it contains a
variable. For this case, it seems excessive to keep track of the special constants in a
set of patterns simply in order to check for redundancy. Consequently the
specification is relaxed to omit the redundancy check in this case. This will be done
by allowing special constants to be matched by variables only. (Note that this is not
necessary to our approach, but apart from being a sensible relaxation it simplifies
the presentation.) For the other primitive patterns, the unit pattern matches the unit
value and a variable matches any value. This is expressed by the following schema:

MPrimitive -
p Pattern; v : Value

p = UT'J A V = Unitv
V

p E ran var

A constructed pattern is matched by a constructed value if the constructors are the
same and the parameters match:

MConstructions
p : Pattern: v : Value

p E ran consp A v - ran consv

pcon.con = vcon.con A pcon.patt matches vcon.val
where

pcon == consp- t p
vcon -= consv- 1 V

Similarly, a tuple pattern matches a tuple value if the two tuples are the same size
and corresponding elements match.

MTuples
p : Pattern; v : Value

p E ran tupp A v E ran tupv
#tp= #rv

V i I .. #rp - (tp i)matches(tv i)
where

'p == tupp-1 p

lv == tupv- V

This gives, for the definition of matches:

8

V p Pattern; v : Value - p matches v 04 MPrimitive v MConstructions v MTuples

The value coverage of a set of patterns is the set of values which may be matched to
the patterns. As a variable matches any value it is necessary to restrict the set of
values to one type so the compiling operations are specified in terms of a valcover
function as follows:

valcover == X part "Pattern; ty : Type . {v : ty I part matches v}

For a set of patterns parts of type ty to be exhaustive

U {p parts • valcover(p, ty) } = ty

2.3 The compatibility of types and patterns

The implementation of the compiling operations is considerably simplified if it is
possible to make use of the fact that the patterns are well-typed. This constraint may
be expressed using a relation, similar to sametype, which specifies which patterns are
compatible with a type. This relation is defined recursively in the usual way as
follows:

_partern_compatible_ "Pattern <-4 Type

For the primitive patterns, the unit pattern is compatible with the unit type, the
special constant patterns are compatible with the special constant type and a
variable is compatible with any type:

PCPrimitive

p Pattern, type Type

p = unp, A type = {unitv}
V

p E ran sconstp A type = ran sconstv

p E ran var

For L.vnstructed patterns, the constructor used must be present in the set used to
construct the values of the datatype, and the parameter must be compatible with the
parameter type of the constructor:

PCConstructions
p : Pattern; type : Type

p E ran consp A type ran consv

con e {Cons_vat I consv(OCons_val) r type con}
patt pattern_compatible type of con(con)

where
Cons..patt

consp(OConspatt) = p

A tuple pattern is compatible if the size of the tuple is the same as the tuple size of
the type, and each element of the pattern is compatible with the types formed from
the elements of the tuple type:

PCTuples

p "Pattern, type : Type

p E ran tupp A type c ran rupv
#rp = Size type

V i 1 .. #tp
• (tp i) patterncompatible { tv tupv 1 LrpeJ tv i}

where
tp == tupp- 1 p

V p : Pattern; type : Type
° p patterncompatible type <* PCPrimitive v PCConstructions v PCTuples

For convenience, the predicate is defined as a schema:

PatternCompatible .,

p : Pattern; type : Type

p pattern compatible type

2.4 The compiling operations

The initial operation generates the set of values from the first pattern to be
compiled:

.... . . .-- =,,i,. i m • m mm ini mm m ,,10

lnitop

Svals! ." P Value; par? ." Pattern," type : Type

par? patterncompatible type A vals! = valcover(par?, type)

The type of the pattern being compiled is given by type, and as we are not concerned
with type checking aspects of the compiler, this is treated as a constant throughout
all the pattern checking operations.

It is convenient to express the result of the checking operation in terms of a new Z
datatype:

Result ::= OK I INCOMPLETE I REDUNDANT

The checking operation is specified in terms of the set of values covered by the
patterns compiled so far and the effect of adding one more pattern.

Checkop
vals?, vals! : P Value

par? : Pattern

r!: Result
type : Type

par? patterncompatible type A vals? c type
vals! = valcover(par?, type) u vals?

valcover(par?, type) {} A vals! = vals? A r! = REDUNDANT
V

(valcover(par?, type) = {} v vals! # vals?) A r! = OK

In this schema, vals? represents the set of values accounted for by the patterns
compiled so far and vals! the result of adding the new pattern par?. The result of the
operation is left in r!. The predicate valcover(par?, type) : { I eliminates reporting a
redundancy when the patterns include special constants.

The pre-condition of this operation is easily simplified to

par? patterncompatible type A vals? c type

If this is so, then from the definition of valcover it follows that vals! is also a subset of
type, and for both operations. This is essential as the placing of the compiling
operation with respect to the syntax of ML ensures that the output of lnit_op will form
the input to Checkop as does the output of Check op itself. Strictly speaking, type is
redundant in Checkop as it could be deduced from vals?. (A function type of, which

gives the type of a value, has already been defined.) However, leaving the type in in
this way leads to a clearer specification.

The final operation checks whether the set of patterns is exhaustive and is simply
given by:

FinalopF vals? P Value; type "Type; r! :Result

vals? type A r! = OK v vals? * type A r! = INCOMPLETE

As with the other operations, the ML syntax determines when this operation is
called: the input is provided either by l nit op for a one-pattem match, or by the last
call of Check_op in a multi-pattern match.

Ths completes the specification of the problem which should be checked for
validity, that is, that it accurately captures the essence of what has been informally
specified in the ML definition.

Z-matchspec keeps Value, Cons val, datatype, unity, sconstv, consv, tupv, Consypat,
Constructors, Size, Type, SCONST, CON, type of con, tuple,
Pattern, unitp, var, sconstp, consp, tupp,
matches, MPrimitive, MConstructions, MTuples,
PCPrimitive, PCConstructions, PCTuples,
pattern_compatible, PatternCompatible,
Result, OK, INCOMPLETE, REDUNDANT,
valcover, Initop, Check op, Finalop

12

3 Formal implementation - the abstraction invariant

,Z matchjspec .Module I

The specification has been written in a form which matches as closely as possible
the informal specification given in the language definition. As such it is defined in
terms of possibly infinite sets of values and it is not possible to implement a test
such as vals? = type in Finalop directly. Instead a coverage measure is used to keep
track of how completely a set of patterns accounts for the values in a type. Data
refinement is used to specify the operations on coverages which correspond to the
operations in the specification. The key step in data refinement is to define the
abstraction invariant which specifies the set of values which correspond to a given
coverage.

The first question to be settled in carrying out the data refinement is the form for the
coverage measure. The form chosen must be easily implementable and the check
not excessively time-consuming. The essentials of the problem are that for
constructed patterns every constructor must be accounted for and for tuple patterns
the individual elements must be complete. This latter property is surprisingly hard
to formalise, so it is useful to have a few test cases to clarify what is actually
required. Using the datatype definitions given previously, consider the case of a
3-tuple of colours. The following sequence of patterns is complete and not redundant
in the sense that each succeeding pattern matches more values and the complete set
of values is only accounted for with the final pattern.

Number of extra values matched
(red, blue, green) 1
(x, blue, green) 2
(red, x, green) 2
(red, blue, x) 2
(red, x, y) 4
(blue, green, red) 1
(blue, x, y) 7
(x, green, green) I
(x, red, green) 1
(x, y, z) 6

It is worth while checking this table to convince yourself that if the concept of
exhaustive patterns is intuitive, the actual check to apply in the tuple case is not. In
order to handle tuples generally, the coverage measure adopted will involve a
function from the coverage provided by the first element of the tuple to the coverage
provided by the remainder of the tuple, rather than having a tuple of coverages. This
will become clearer as the formalism is developed.

The other complication in the problem is that it is necessary to account for
constructor functions as well as constants in the patterns. Thus for a pair of labels one
has the following sequence of exhaustive but not redundant patterns:

(code(red), x)
(x, number(O, y))
(code(x), y)
(x, name(y))
(x, y)

It is possible to treat constructed patterns as though they were 2-tuples, using a
function in exactly the same way as for tuples. This approach has not been taken in
the implementation presented here, partly for reasons of efficiency and partly for
ease of understanding. Instead, a function from constructors to coverages is used.

Special constants are treated by having an incomplete coverage measure, which
represents an empty set of values, corresponding to the fact that, in the specification,
a special constant pattern matches no value. Treating the special constants
accurately would require keeping a measure dependent on the number of constants
already accounted for.

With this motivation the Z datatype defining the coverage measure may be written
down:

Cover::= complete I incomplete
I construct ((CON -) Cover)) Ipair ((IF (Cover x Cover)))

Thus the coverage measure chosen is a tree in which the leaves correspond to full or
no coverage and the nodes of the tree correspond to the constructor and tuple
structure of the type. The parameter of pair is given as a set of pairs rather than a
function as this seems to make the explanation easier. Finite sets are used to ensure
that the datatype is satisfiable. Before going on to define the abstraction function, it
may be mentioned that the sequence of patterns compiled also forms a coverage
measure. However, it is worth having a separate coverage datatype in order to
optimise the operations required.

The formal definition of the abstraction invariant will be motivated by giving an
example of the intended relation between coverages and patterns. The first two
patterns from the sequence of label pairs above are to be represented by the following
two coverages:

pair { construct { code F* construct { red F4 complete}} 1 complete }
pair {complete F) construct { number 14 pair { incomplete 14 complete}11

The essence of the problem is to combine successive coverages into one in such a
way as to end up with the complete cover when the set of patterns is exhaustive.

For the presentation of the abstraction invariant some functions for manipulating
tuple types are necessary. From a tuple type one can form a type corresponding to
the first element of the tuple and one corresponding to the remainder of the tuple,
given by two functions HD and TL as follows:

HD == X ty: Type
I y c ran tupv

{tv tuple Value I tv c tupv-1 Ityi hd tv}

TL : Type -+-> Type

V ty1, ty2 Type
iy1 c ran tupv

•ty 2 = TLty1

Size ty = 2 A = {tv : tuple Value I tv e tupv-1 Ity I tv(2)}
V

Size ty1 > 2 A ty2 = {tv tuple Value I tv e tupv- bry,) tupv(tl tv)}

Note that these functions deliver a type rather than an arbitrary set of values because
successive elements of values in a tuple type must have the same type.

The basic requirement for the abstraction is a function from a Cover value to a set of
Value. This cannot be provided from the datatype chosen because the set of values
from a complete cover will depend on the type. However, the actual check to be
made is independent of the type in this case, so the specification contains redundant
information as far as these particular checks are concerned. (This state of affairs is
called bias.) It is still possible to carry out the refinement, but in order to do so, it is
necessary to have a function from a Cover and a Type to a set of Value. A unique
definition of this function will be provided, built up according to the structure of Cover
and Type in the usual way.

Abs_fn : (Cover x Type) -+-> IP Value

For the primitive coverage elements we have the following

AlPrimitive _Fc : Cover; type : Type; vals : IP Value

(c = complete A vals = type) v (c = incomplete A vals ={}

For constructed coverages the cover represents any constructed value it is possible
to form from a constructor in the domain of the constructor function combined with a
value drawn from the set represented by the corresponding coverage element in the
range of the function. This is expressed by the following schema:

AlConstructions

c "Cover, type "Type; vals : IP Value

c E ran construct A type c ran consv
vals = {Cons_val; F : CON -* Cover

c = construct F A con E dom F
A val E Abs_fn(F con, type_of con(con))

consv OCons val
}

For tuples we need a function from pairs of coverages to sets of values as follows:

Tuple vals : (Cover x Cover x Type) -4 IP ruple Value

V c1, c2 : Cover; type : Type; vals : IP tuple Value
I type c ran tupv

Tuplevals(c1 , c2, type) = vals

Size type = 2 A vals = {v : Abs.fn(c 1 , HD type); v2 : Abs_fn(c 2 , TL type)
(v 1, v2)

V

Size type > 2 A vals = {vj : Abs_fn(c1 , HD type), pC], pc2 : Cover,
rv : tuple Value
I PC1 4 PC2 E pair- t C2
A v E Tuple_vals(pc1 , pc2, TL type)

v1 cons tv

The set of values corresponding to a pair of covers is that set of tuple values formed
by taking any element from the set corresponding to the first cover for the first
element and combining it with any element from the set corresponding to the
second. Thus if the first cover corresponds to n values and the second to m, the pair of
covers corresponds to n x m tuple values. For longer tuples, the second cover value
will itself be a pair giving rise to a set of tuple values whose size is one less than the
original. Form a set by taking any element from the values corresponding to the first
cover and add this to the front of any element in the tuples provided by the second
cover.

With this auxiliary function the abstraction function for tuples may be defined as
follows:

16

AITuples

c : Cover, type "Type, vals : P Value

c e ran pair A type c ran tupv

vals = U { c1 , C2 : Cover I c1 I- C2 r pair- I c - tupv I Tuple_vals(c1 , c2 , type) I }

The abstraction function itself is simply given by the constraint:

Absfn = X c : Cover; type Type
• p. vals : P Value I AIPrimitive v AlConstructions v AlTuples• vals

Finally, it is convenient to define the abstraction invariant as a schema:

c Cover; type : Type; vals : FP Value

vals = Abs_fn(c, type)

Z_match_Al keeps Cover, complete, incomplete, construct, pair,
HD, TL,
AI, Abs_fn, AIPrimitive, AlConstructions, AlTuples

4 The refined operations

4.1 The initial operation

Z_match spec :Module

* Z match_Al :Module

I: is interesting to follow the technique given in Morgan [1988] in which the concrete
operations corresponding to the abstract operations are actually calculated from the
abstraction invariant. To summarise the notation, which will be slightly adapted
from that used by Morgan, an operation is represented by its pre and post-conditions
as below:

A av [pre, post]

This represents an operation achieving a state of affairs specified by the predicate post. It
must be given an initial state represented by pre and achieves it by altering the abstract
variable av.

Given an abstraction invariant Al, involving the concrete variable cv, the corresponding
concrete operation is simply given by the formula

A cv [3 av - AI A pre, 3 av - AI A post]

This technique will be applied first of all to the operation Init_op. In the refinement
notation we can write:

Initop ; A vals [par patterncompatible type, vals = valcover(par, type)]

This statement is an assertion that the operation on the right hand side of the r symbol is
an operation refinement of the Z schema operation Init_op. In the refinement notation,
operations are expressed in terms of variables assumed to be declared within the
current context of the operation. Variables in the pre-condition refer to values before
the operation while variables in the post-condition refer to values after.
Consequently, there is no need for the Z decorations of !, ? or ' and these are
systematically dropped. The pre-condition for the operation has been derived by
existentially quantifying over the output variables in the Z schema and simplifying.

For the data refinement, the concrete variable is the coverage, c, of type Cover while the
abstract variable is the set of values vals, of type IP Value. The concrete operations will
eventually prove to be independent of the type which may simply be discarded.
Using the abstraction invariant and the data refinement symbol "_, our operation is
refined as follows:

-S A c [3 vals : FP Value * Al A par pattern compatible type,
3 vals : P Value * Al A vals = valcover(par, type)]

18

This operation is guaranteed to be a correct data refinement of Initop. Looking at the
post-condition, it is clear that it is necessary to calculate a coverage from the input
pattern. This coverage must be such that the application of the abstraction function
gives the same set of values as that provided by valcover when applied to the input
pattern. It is fairly obvious, once one has stood back from the trees of the formalism
to view the wood of the problem, that the initial value of c is irrelevant. Consequently
there is no problem incurred in weakening the pre-condition and simplifying the
post-condition by substituting for vals as follows

; A c [par patterncompatible type, Abs_fn(c, type) = valcover(par, type)]

The implementation problem therefore is to define a coverage function which relates a
Pattern to a Cover in the manner required:

coverage : Pattern -4 Cover

For this to be a correct implementation of the initial operation, the following
theorem has to be proved:

Pattern_Compatible
I.

Abs_fn(coverage(p), type) = valcover(p, type)

The specification of coverage will be deferred to a later section because the other
operations introduce further constraints on its definition.

4.2 The checking operation

Proceeding in the same way as before

Check-op C con vals0 • A vals, r [vals = vals0 A par patterncompatible type
A vals c type, Check op]

This step has introduced some more refinement notation. Where, as in this case, the
post-condition is dependent on the values both before and after the operation, it is
necessary to preserve the initial value using a logical constant, which is introduced with
the reserved word con. By convention, initial values are indicated with a O-subscript,
so valso corresponds to the input value vals? in the schema.

Note that in this specification the pre-condition does not record the fact that the
input values are provided from the results of the initial operation or a previous use of
the checking operation as the case may be. This will be introduced informally later.
The data refinement for the checking operation can be written as:

.5 con valsO, co • A c, r [3 vals : FP Value
Al A vals = vals0 A C = Co

A par patterncompatible type A vals type,
3 vals : P Value • Al A Check_op]

Because Abs_fn(c, type) is always a subset of type, the pre-condition may be replaced
by vals0 = Abs jn(cO, type) A par pattern_compatible type.

The post-condition may be simplified, by eliminating vals and valsO, into a predicate
described by the following schema:

Check opl
c, co Cover

par Pattern
type Type
r : Result

par patterncompatible type
Abs jn(c, type) = valcover(par, type) u Abs jn(cO, type)

valcover(par, type) * { } A Abs_fn(c, type) = Abs jn(cO, type)
A r = REDUNDANT

v (valcover(par, type) = { } v Abs_fn(c, type) # Abs jn(cO, type))
Ar=OK

We already have the requirement to find a coverage function such that
valcover(par?, type) = Abs fn(coverage(par?), type), so it is tempting to define a union
function between coverages which carries out the corresponding operation to
forming a union of sets of values:

union : (Cover x Cover) -+-) Cover

and refine to the operation

Check_op_2
c, co • Cover

par Pattern
type Type
r : Result

c = union(coverage(par), co)

coverage(par) * incomplete A C = Co A r = REDUNDANT
v (coverage(par) = incomplete v c * cO) A r = OK

For this to be so, the following theorem must be proved:

Check op_2
I.

Check op_1

This corresponds to strengthening the post-condition, namely, that the achievement
of Checkop 2 will entail the achievement of Check_opl. Note that the type has now
dropped out of the predicates.

For the proof of this theorem, it is necessary to show that the union function behaves
like set union and that there is a unique representation of the empty set of values. It
is difficult to define a function having the properties required without taking into
account the fact that the coverages have all been derived from patterns of the same
type. Consequently, extra constraints will be added to the specification which are
satisfied by the pre-condition. These constraints will be defined in terms of a
covercompatible relation, and express the fact that the union function is only required
to combine coverages of the same structure.

This is defined in a similar way to pattern_compatible:

cover-compatible "Cover " Type

CCPrimitive
c Cover; type "Type

c - complete v c = incomplete

CCConstructions

c : Cover, type : Type

c E ran construct A type c ran consv
dom F Q {Cons_val I consv(OCons_val) E type• con}
V con : dom F - (F con) cover compatible (type of con con)

where
F = = construcr1 c

CCTuples
c : Cover; type "Type

C E ran pair A type a ran tupv
V c: dom F • c cover compatible HD type

V c ran F • c cover compatible TL type
where

F = = pair- i c

V c :Cover; type: Type
• c cover-compatible type 0 CCPrimitive v CCConstructions v CCTuples

In the refined operation, the compatibility of the coverage c with the type is guaranteed
by the compatibility of the pattern par with the type while the fact that co is compatible
is guaranteed by the initial set of values in the abstract operation being generated by
matching type-compatible patterns. This is all rather tedious to formalise and not
very illuminating, so these theorems will not be stated. The theorems expressing the
more interesting union and uniqueness properties may be broken down into sub-goals
defined in terms of the following schema, which gathers together the parameters of
union and its result, and has the type as a parameter:

Union - _I

c1 , c2, c . Cover

type : Type

c = union(c j, c2)

cl cover-compatible type

e2 covercompatible type

The first goal is related to the first constraint of Check_op_2 :

Union
I,

Abs fn(c, type) = Abs_fn(c1 , type) u Abs~fn(c2 , type)

The remaining goals are related to the second constraint:

Pattern_Compatible
I,

coverage(p) * incomplete =0 valcover(p, type) * { }

Union
I,
c = c2 = Absjfn(c, type) = Abs jn(c2 , type)

Union
I.

c # c2 ' Absjn(c, type) * Abs fn(c2 , type)

The first of these goals requires the coverage function to deliver the incomplete value
whenever the value coverage is empty. The second is trivially true and the third
requires the result of the union function to change whenever the set of values covered
changes. Further constraints on union will emerge with the definition of the final
operation.

4.3 The final operation

This performs the final check for whether the set of patterns is exhaustive or not.
The operation is simply refined as follows:

Final op ; A r [true, vals = type A r = OK v vals # type A r = INCOMPLETE]
5 A r [true, c = complete A r = OK v c # complete A r = INCOMPLETE]

Here the data refinement and simplification of the pre and post conditions have been
carried out in one step. The input to the operation is simply the result of union, or, in the
case of a single clause in the function definition, the result of coverage. Accordingly,
there are further constraints to satisfy. These are:

Union
i.

c = complete => Abs fn(c, type) = type

Union
I.

c # complete => Abs_fn(c, type) type

p :Pattern; type : Type; c .-Cover
I.
c = coverage(p) = complete => Abs_fn(c, type) = type

p Pattern; type : Type; c : Cover
I.

c = coverage(p) * complete = Abs_fn(c, type) type

The first and third of these goals follow immediately from the definition of the
abstraction function, while the second and fourth again require a unique
representation of completeness.

Z matchops keeps coverage, union, Union,
cover-compatible, CCPrimitive, CCConstructions, CCTuples

-- , -- ',"'" mni i~ i imi iN 23

5 Abstract algorithm design

Zjmatchspec .Module

Z match_Al :Module-

Zmatchops :Module

5.1 The coverage function

We have to provide a constructive definition of the function which satisfies the
following theorems:

Pattern_Compatible
I,

Absjn(coverage(p), type) = valcover(p, type)

PatternCompatible
I.

coverage(p) * incomplete 4 valcover(p, type) { }

PatternCompatible; c : Cover
I.

c = coverage(p) = complete 4 Abs_fn(c, type) = type

Pattern_Compatible; c "Cover
I.

c = coverage(p) # complete 4 Abs_fn(c, type) type

The first of these gives the basic property required, the second the property that the
empty value coverage is uniquely represented by the incomplete cover and the last two
that the complete cover uniquely represents the exhaustive set of patterns. Note that
the third of these theorems follows immediately from the definition of Abs jn. With
these theorems in mind, the definition of coverage may be written down by cases on the
structure of Pattern, following the definition of matches:

For the primitive patterns of variables and special constants we have

_ CPrimitive

p Pattern; c Cover

p = unitp A C = complete
V

p e ran var A c = complete
V

p e ran sconstp A C = incomplete

24

For constructed patterns a construct coverage will normally be produced in which the
first element corresponds to the constructor and the second to the coverage provided
by the parameter. To satisfy the second theorem above, it is necessary to test for an
incomplete parameter coverage while to satisfy the fourth theorem the complete cover
must be returned when the set of patterns is exhaustive. For a datatype containing
only one constructor this is the case when the parameter provides a complete
coverage and this case must be tested.

CConstructions

p : Pattern; c : Cover

p E ran consp

datarype con = {con } A parcover = complete A c = complete
V
parcover = incomplete A c = incomplete
V

--,(parcover = incomplete v datatype con = {con} A parcover = complete) A
c = construct {con I- parcover}

where
con == (consp-1 p).con

parcover = = coverage (consp- 1 p).patt

For tuples, it is also necessary to test for complete and incomplete partial results, which
is done using the CPair function as follows:

CPair == X c1 , C2 : Cover

V .c Cover
c= complete A C2 = complete A c = complete

V

(c, = incomplete v c2 = incomplete) A c = incomplete
V
--,(c, = incomplete v c2 = incomplete)
A

--(c1 = complete A C2 = complete)

A c = pair{c1 c2}
"C

Note that we are now getting to the stage where the if then else notation of the

implementation language would be more natural and more compact.

With this function the coverage for tuples is given by

CTuples
p : Pattern, c. Cover

p E ran tupp
#tp = 2 A c = CPair(coverage(rp 1), coverage(tp 2))
V

#tp > 2 A c = CPair(coverage(tp 1), coverage(tupp(il t')))
where

tp = = tupp- 1 p

The coverage function is given by the constraint:

coverage = p Pattern
.i c : Cover I CPrimitive v CConstructions v CTuples• c

Note that this function is total as the disjunction covers all possible Pattern constructors.

5.2 The union function

As with coverage, the union function must satisfy the following theorems:

Union
!.

Abs_fn(c, type) = Abs fn(cl, type) u Abs fn(c2, type)

Union
I.

c = C2 4 Abs fn(c, type) = Absjfn(c2 , type)

Union
I.

c * c2 => Abs fn(c, type) * Abs_fn(c 2, type)

Union
I.

c = complete => Abs_fn(c, type) = type

Union
I.

c * complete => Abs Jn(c, type) type

The principal objective is to make the union function correspond to the operation of
uniting sets of values. The additional constraints are that the coverage must only
change when the underlying sets of values change and that it is necessary to have a
unique measure for the exhaustive set of patterns.

For the abstract algorithm design, consider first the case of a set of constructed
patterns. These are represented by a construct coverage which measures the coverage
of values associated with each of the constructors in the datatype. So the coverage
will be represented by some function, F, of the form F = {cj Pi}, where the c, are the
constructors of a datatype and the Pi represent sets of parameter values covered so far.
Adding a new pattern will give rise to an extra coverage represented in the same
way by the maplet cj i- P. The new coverage, F', will depend on whether cy is a member
of the domain of F or not. If it is, the coverage provided by the parameter of the new
pattern is united with the coverage provided by the parameters of the patterns
already processed which use that constructor. This is expressed formally as
F' = F E {cj1 P1 u P}. When a new pattern introduces a constructor for the first
time, the coverage is simply added to those already there. In this case,
F'= Fu {cj *P}.

Calculating the united coverage in this way will cause F to differ from F exactly when
a new constructor is added to the coverage or when a parameter coverage, parc, changes.
This satisfies the requirement of the third goal for this case. For the fifth goal, a test
for completeness is required, expressed as follows:

ConstructorcompleteP: . CON -) Cover

3 cs : ran datatype • FP = { c : cs - c 4 complete}

Using this schema and generalising to cover the case of merging sets of patterns, the
union constructor case is defined as follows:

UConstructions

c1 , c2 , c : Cover

c1 e ran construct A c2 e ran construct

Constructor-complete A c = complete
V
--,Constructor-complete A c = construct F'

where
F == construcr c1

f = = construct- I c2

f== domf4F

f 2 = omF 4f

f3== {c: dom F r) domf . c 14 union(F c,f c)}

F' == (fl u f 2 u f 3)

This is fairly straightforward, but the same technique may be used to deal with tuple

patterns, which are represented by pair coverages. In this case, one coverage stands for
the set of values covered in the first element of the tuple, which is bound to the set
of values covered by the rest of the tuple in a similar way to that in which the
parameter of a constructed pattern is bound to its constructor. Consequently a pair
coverage stands for a set of values which may be represented in the form F = {A i Bi},
where the As and Bs now stand for sets of values. Each element of the set F stands for a
set of tuple values formed by taking one element out of an A and combining it with any
element out of the corresponding B. A new pattern gives rise to a set of values covered
of the form a * 3. For a given element of F, say A F4 B, the standard rules for taking
unions of Cartesian products should give rise to the following extra elements in F':

A\at4B
An'al-Bufi

(x\A H 0

Applying this procedure to every element in F gives the new coverage, F'. If any of the
sets are empty, this element represents no values and may be discarded. To meet the
other goals it is .'mportant that F should differ from F exactly when new values have
been added to the set of values covered. This objective is attained by keeping the A i

disjoint: an alteration to one of them cannot then produce a value which is already
accounted for by the other members of F. If this is the case, and if the first two
operations above correspond to the introduction of new values, that is, if B U P3 # B,
alterations must correspond to new values. If all the Ai in F are disjoint, elements
formed by these operations will also be disjoint. However, the third operation may
give rise to intersections, but these may be eliminated by adding one element
(a \ U (dom F))) P to the function as a whole, rather than carrying out the operation
for each element.

As an example of this process, consider the following sequence of patterns:

(red, y)
(green, blue)
(x, red)
(green, green)
(blue, y)

These patterns match the following pairs of values:

red colour
green * blue

colour 1+ red
green 4 green
blue F* colour

Uniting the pairs according to these rules gives successively:

28

{red colour, green I- blue}
{red i colour, green F- {red, blue}, blue 4 red}
{ { red, green } 1) colour, blue 1+ red}
colour 4 colour

In formalising this process it is necessary to specify operations representing the
difference and intersection of sets of values, just as it is already required to form
unions. For differences and intersections, it is necessary to distinguish the empty set,
which corresponds to the incomplete cover. The difference and intersection functions
are both defined recursively and their types are given by:

difference, intersection : (Cover x Cover) -+ Cover

Difference and intersection of tuples involves sets of pairs of differences, so it useful
to define some schemas to provide the necessary signatures as follows:

Pair-element , Pair-set - ,

Al, A 2, a , a2 Cover F, result.pairs " (Cover x Cover)

res_pairs : P (Cover x Cover) °X1, 0 2 : Cover

In these schemas, A1 4 A2 e F will be transformed into respairs as a result of adding
a pair coverage element (x1 F a 2 . Applying this process to all elements of F gives a new
set, called resultpairs.

The intersection function is the simplest: for one element of a pair set the
intersection is given by:

_nt-element.

Pair-element

res.pairs= {x 1 y}
where

x == intersection(A , ax1)

y == intersection(A2, (X2)

The set of pairs is obtained by adding together all the elements and discarding any
that are empty:

In_pair
Pair-set

result_pairs = {Intelement; x, y : Cover
jA I -A 2 e F
A X " y E res..pairs A X *e incomplete A y incomplete

}

With this, the definition of intersection can be given by cases on the structure of Cover
as follows:

]Primitive

c1 , c2 , c : Cover

(c1 = complete A c = c2) v (c] = incomplete A c = incomplete)
V
(c2 = complete A c = c1) v (c2 = incomplete A c = incomplete)

A complete cover accounts for all values and so the result is unchanged. An
incomplete cover corresponds to the empty set which cannot have an intersection
with any set of values.

For constructed covers, the intersection is determined by whether the constructors
are equal and if so, whether the parameter values intersect:

IConstructions
c1 , c2, c : Cover

cI E ran construct A C2 E ran construct

F' = {A} c = incomplete
V

F ' A c construct F'
where

F == construct- ' c1

F== {c : dom F; parc, int : Cover
I c + parc • construct-h c2
A int = intersection(F c, parc) incomplete

c " int

Fp

For tuples, any member of the pair coverages may intersect:

....... . ",-,-,, mmm mm mm mmm-i m m~i~mm

ITuples
c1, C2 , c : Cover

C E ran pair A C2 e ran pair

F = A c = incomplete
V

F' { A c =pair F'
where

F == pair- 1 c1

F' == O {Jntpair I al) a2 E pair- ' c2 resultpairs}

Finally, the intersection function is given by the constraint:

intersection = X c1, c2 : Cover
t c : Cover
I IPrimitive v IConstructions v ITuples
*C

The difference function is similar, except that for tuples, the difference of cartesian
product sets is slightly more complicated. On one element of a pair set, the
difference function carries out the following operation:

Diff element
Pair-element

respairs = {x I- A 2, z I* y}
where

x== difference(Al , a1)

y == difference(A2 , C2)

z == intersection(Al, a 1)

For the pair relation:

Diff pair
Pair set

result.pairs = {Diff element; x, y Cover
IAI-*A2 E F
A X H) y e res.pairs A X * incomplete A y * incomplete

The definition of difference is now given by cases on the structure of Cover as follows:

31

DPrimitive

c1 , c2 , c : Cover

c1 = incomplete A C = incomplete

C2 = complete A C = incomplete v C2 = incomplete A C = C1

The constraints express the fact that subtracting from the empty set must leave the
empty set as should subtracting the complete set of values. Subtracting the empty
set must leave the result unchanged.

For constructors, the new constructor coverage is obtained from the old one by
modifying the coverage function where it has elements in common with the
subtrahend:

DConstructions
c1, c2 , c : Cover

Ci E ran construct A C2 e ran construct

F {} A C = incomplete
V

F' {A} c = construct F'
where

F == construcr c1

F' == {c : dor F; parc, diff . Cover
I c H) parc E construct- ' C2

A diff = difference(F c, parc) # incomplete
V

c i dom(construct- t c2) A diff = F c
.c H diff
I

When both coverages are pairs the difference is given by:

DTuples
c I , C2, c : Cover

c I e ran pair A C2 r ran pair

F = {} A c = incomplete
V

F* {} ^c = pair F'
where

F == pair-' c1

F == {Diff.pair I a, + a 2 r pair- I C2 • resultjpairs}

32

When cI is complete, but C2 is not, it is necessary to expand c1 into the appropriate
representation of completeness. For constructors, we have the following:

cl_comnpletec2_constructor

c1 , c2, c : Cover

c1 = complete A c2 E ran construct

F = {} Ac = incomplete
V

F' { } c = construct F
where

conset = = p cs : ran datatype I dom(cons truct - I c2) Q cs • cs

F' == {c : conset; parc, diff : Cover
c I- parc E construct- t C2

A diff = difference(complete, parc) incomplete
oc H diff

and for tuples:

cl_complete c2 pair
c1 , c2, c : Cover

C1 = complete A C2 E ran pair
F' = {} A c = incomplete
V

F" {} A C = pair F'
where

F = = { complete I- complete }

F' =U= L {Diff.pair I a] F a2 E pair- C2
° result_pairs}

This gives for the difference function:

difference = I. c1, c2 : Cover
g I.t c : Cover
I DPrimitive v DConstructions v DTuples
v clcomplete c2constructor v clcomplete c2_pair
*C

The union function is similar in structure to difference, but this time it is also
necessary to take into acount the unique representation of completeness. (The
intersection and difference functions cannot generate a complete cover, although they
may generate an incomplete one. For the union function, the converse is true.) To

express completeness, it is necessary to define a relation UNION, corresponding to a
distributed union function:

U • seq Cover -) Cover

U = ? sc seq Cover
•t c • Cover
I sc = 0AC = incomplete

V

Sc 0 A C = union(hd sc, U(tl sc))
*C

UNION == {cs : Cover; c : Cover
I 3 sc : seq Cover
I ran sc = CS A #SC = #CS

Sc= USc

This is rather unsatisfactory as UNION has had to be defined as a relation, rather than
a function. This is because the definition depends on the order in which the covers
are united, specified by the sequence of covers, sc, above. For type-compatible covers,
the result should be independent of the order, corresponding to the fact that set union
distributes.

With the UNION relation, the completeness of a set of tuples may be expressed as
follows:

Union_complete
c : Cover; F' P (Cover x Cover)

cc = complete A c = complete
V
cc = incomplete A C = pair F'
V
cc * incomplete A CC complete
A c = pair(completed4 F' u {cc I complete})

where
completed: P Cover; cc: Cover

completed = {c : dom F' I F' c = complete}
cc UNION completed

In this schema, if any of the second elements is complete, then the corresponding

-- ,,, -,,, m,,mw, u nm l m~~m n lunl mnnm I u '34 -q

first elements may be united. If the result is complete then the set of pairs is also
complete.

The union function can now be defined in an analogous way to difference:

Union element
Pair element

z = A 2 A res_pairs = {A 1 F* A 2}
V

z * A2 A res_.pairs = {x) A 2, y F4 z}
where

x == difference(A1 , a1)

y == intersection(A], a1)

z == union(ca2 , A 2)

For the pair relation, a constraint to express the third difference operation for the set
of pairs as a whole must be added:

Union_.pair
Pair-set

remainder = incomplete A resultpairs = pairs]
V
remainder incomplete A resultpairs = pairs1 u {remainder F) o2}

where
pairs] P (Cover x Cover); cf, remainder.: Cover

pairs] = { Unionelement; x, y : Cover
JAI I-A 2 e F
A X 1 y e respairs A x # incomplete A y incomplete

cf UNION dom F

remainder = difference(a1 , cf)

With these schemas, forming the union of tuples is given by:

...,,,,, m~m ,, no 3, 5

UTuples
c1 , c2 , c : Cover

c, E ran pair A C2 E ran pair

Union complete
where

F ==pair- 1 c1

F'P U I Union pair I axI - (2 E pair-I C2 * result flairs I

The primitive coverages are easily dealt with. If the coverage is already complete adding
more values does not increase it; if the complete coverage is added, the result can only
be complete; if the incomplete coverage is added, the set of values covered is
unchanged:

U rimitive ___________________ ____

cl, c2, c : Cover

(c 1 = complete v c2 = complete) A c = complete

(c, = incomplete A c = C2) v (c2 = incomplete A C =CI)

And now the union function is given by

union = ?L cl, c2 .- Cover
j t c :Cover
I UPrimitive v UConstructions v (i~uples
*c

Z-match juns keeps CPrimitive, CConstructions, CTuples,
UPrimitive, UConstructions, UTuples,
intersection, IWrimitive, IConstructions, ITuples,
difference, DPrimitive, DConstructions, DTuples

36

6 Proof opportunities

Z_matchspec .-Module!

SZ matchAl .Module'

IZ_matchops :Module

Z match juns :Module

The section title is intended to convey the concept of selective proof: proof should
be used to increase confidence in those parts of the design which need further
investigation, rathe- than calling for the proof of everything from first principles. In a
specification of this nature, there are two sorts of proof opportunity, namely those
associated with the consistency of the specification and those associated with the
refinement process itself. In the course of developing this implementation, the
opportunity has been taken to point out various consistency proofs as the need arises.
For example, datatypes should be satisfiable, pt-terms should stand for uniquely
existing values and the use of function arrows should be compatible with the
axiomatic definition of the functions. The proof requirements for consistency are
relatively trivial and do not add greatly to the understanding of the problem.
Consequently we shall concentrate on the proof opportunities generated by the
refinement itself and attempt to show the main structure of the proofs. Even here,
the sea of theorems to prove is both wide and deep, so we shall concentrate on one or
two example cases.

6.1 Proofs for the coverage function

The main theorem to prove is

PatternCompatible
I.

Abs jn(coverage(p), type) = valcover(p, type)

The theorem contains p and type as a parameter, so it has to be shown for all values of
these types. The constraint in the hypothesis ensures that the type is determined by
the pattern in most cases, so the main proof is by induction over the structure of Pattern,
with type corresponding.

Establishing a theorem of the form P(p), where p is a Pattern and P some predicate on p,
requires establishing the following base cases:

I P(unitp)
sc : SCONST 1 P(sconstp(sc)
v : Variable I. P(var(v))

and the following induction steps

Conspatt; P(part) I. P(consp(OConspatt))
rp : tuple Pattern; V p : ran rp - P(p) I. P(upp(tp))

For the coverage theorem, the base cases are a consequence of the following
theorems whose proof is immediate:

PCPrimitive; c : Cover; vals : P Value; p = unitp
I,

AIPrimitive A CPrimitive A vals = {:v type MPrimitive}

PCPrimitive; c : Cover; vals : IP Value; p e ran sconsp

AlPrimitive A CPrimitive A vals = {v type I MPrimitive}

PCPrimitive," c : Cover; vals • FP Value, p e ran var
I.

AIPrimitive A CPrimitive A vals = {v : type I MPrimitive}

For the induction steps, the coverage property required may be expressed using the
following schema:

Coverage_property
p "Pattern; type : Type

Pattern-Compatible =
Abs_fn(coverage(p), type) = valcover(p, type)

The constructor case will then follow from the theorem:

p : Pattern, type : Type, c : Cover; vals : P Value

Cons_patt; p = consp OCons_patt

PCConstructions; partype : Type; partype = type of con con

Coverage-prpertypattlp, partype/type]
I"

AlConstructions A CConstructions A vals = {v : type I MConstructions }

while the tuple case follows from the theorem:

38

p : Pattern; type : Type; c : Cover; vals : P Value

tp : ruple Pattern; p = tupp tp
PCTuples

tt : seq Type; rt = {i dor tp i F {tv : uv -1 (type tvi}}
V i : dom tp; p : ran rp; type ran tt
I p i A type = n i
* Coverage_property
i.

AlTuples A CTuples A vals = {v : type I MTuples}

In both of these theorems, the hypothesis list makes use of the fact that the type in
the induction hypothesis must be derived from the given type, which is compatible
with the pattern. This is expressed by the following theorems:

p : Pattern; type : Type

Cons__patt; p = consp OCons_part
PatternCompatible [patt/p, partypeltype]
I.

partype = type of con con

p : Pattern; type : Type

rp : tuple Pattern; p = tupp tp

tt : seq Type
V i : dor tp; p : ran tp; type : ran tt
p = tp i A type = tt i
Pattern-Compatible

I.

tt = {i : dom rp - i F) { rv : tupv- 1 [type). tv i}}

The proof of the constructor case may be carried out along the following lines. The
conclusion consists of a conjunction of three predicates, each of which must be
shown to be true. The second provides a value for the cover, c, which may be used to
rewrite the first predicate to give

p : Pattern; type : Type; c : Cover; vals : FP Value

Cons.patt; p = consp OCons.patt

partype : Type; partype = type of con con
PCConstructions; Coverage.propertylpat1 p, partype/type]
I.
vals = {val : Abs_fn(coverage patt, type of con con) . consv eCons_val

vals = {val : type of con con I patt matches val - consv OCons val}

This theorem follows immediately from the hypothesis. The tuple case requires an

10

induction over the length of the tuple, starting with the base case of the tuple size
being 2. The constructor and tuple case together give the theorem required.

The other requirements on coverage are easily established. As an example, we can try
and establish

PatternCompatible; c Cover; vals : IP Value

c = coverage(p) A vals = valcover(p, type)
I.
c = incomplete v vals { }

The base cases are a consequence of the following theorems whose proof is
immediate.

PCPrimitive; CPrimitive; vals : P Value

p = unitp A vals = {v : type I MPrimitive}
I.

c incomplete A vals = {unitv}

PCPrimitive; CPrimitive; vals : P Value
p E ran sconstp A vals = {v : type I MPrimitive}
I.

c = incomplete

PCPrimitive; CPrimitive; vals : P Value

p e ran var A vals = {v : type I MPrimitive}
I.

c * incomplete A vals = type

The induction property is

Incomplete_property
p : Pattern; type : Type

Pattern Compatible ' c * incomplete = vals { }
where

C == coverage(p)

vals == valcover(p, type)

The constructor induction step is as follows

40

p : Pattern; type : Type; c." Cover; vals : P Value

Cons-Patt; p = consp ECons_patt
PCConstructions; partype : Type; partype = type of con con
Coverage-property[pot1 /p, partype/type]
I.

CConstructions A vals = { v : type I MConstructions }
c * incomplete = coverage part * incomplete

From the conclusion and the hypothesis it is possible to show that
valcover(patt, type of con con) is not empty, from which it follows that vals is not
empty. As before, the tuple case will involve an induction over the size of the tuple.

To summarise, the proofs of 4 theorems are required, as listed in section 5, of which
the first two have been outlined here. The third theorem follows immediately from
the definition of Absfn while the fourth will have a similar structure to that given
above. Thus to show the main structure of the proof fully we are required to display
18 theorems: 5 each for the non-trivial theorems corresponding to the constructors of
Pattern, 2 for the type lemmas and one for the third, trivial, theorem.

6.2 Proofs for the union function

The main theorem we have to show is

Union
I.

Abs_fn(c, type) = Abs fn(c1, type) u Abs_fn(c 2, type)

Two lemmas are needed for this, which prove that the difference and intersection
functions have their intended effect. The intersection lemma is the easiest of these,
and may be expressed using the schema below:

Intersection

c1 , c2 , c : Cover

type : Type

cl cover compatible type A C2 cover-compatible type

c = intersection(cl, c2)

The theorem required is

Intersection
I.

Abs~fn(c, type) = Absjfn(c1 , type) r) Absjfn(c2 , type)

The proof involves a structural induction over a cross-product of Cover, again with type

-- l nl l i i l l I II III

corresponding. There are 4 constructors in the datatype and consequently 16 cases to
prove. Of these, the two cases with mixed pair and construct constructors may be
eliminated because they cannot be simultaneously compatible with the type. Of the
14 remaining cases, 12, which deal with the cl or c2 being complete or incomplete, are
trivial and follow immediately from the fact that the abstraction function delivers
the full set of values in the type, or the empty set, respectively. As a sample theorem
required for the full proof, take the case of a pair of construct coverages. The necessary
theorem will be written in terms of the following induction property:

Intersectproperty
c1 , c2 , c • Cover; type Type

Intersection 4 vals = vals n vals2

where
vats] == Abs_fn(c1 , type)

vats2 == Abs_fn(c 2, type)

vals == Absfn(c, type)

With this, the constructor induction step is

c1 , c2 , c : Cover; vals1 , vats2 , vals : P Value; type : Type

F1, F2 : CON +-) Cover; c, = construct F1; c2 = construct F2

Al,; A12; A; type1 = type 2 = type

CCConstructions1 ; CCConstructions2
V con dom F1 u dom F2 ; type : Type; c, c2, c "Cover

I type = type of con con A c1 = F1 con A c2 = F2 con
Intersectproperty

IConstructions 4 vals = vals1 r) vals2

This impressive list of hypotheses is generated quite mechanically. The theorem
may be proved by showing V v : vals * v e vals1 A v e vats2. This is straightforward,
but rather tedious, and complicated by the extra test on incompleteness.

As a final sample, the proof that an increment to the coverage implies an increment
to the values covered will be exhibited. The theorem to prove is

Union
I.

c * c2 =4 Abs_fn(c, type) * Abs.fn(c2 , type)

The base cases are relatively easily established, so we shall consider the induction
steps. As before define a schema to express the induction hypothesis:

42

Increment_property
cI, c2, C : Cover; type : Type

Union 4 c * C2 4 vals * va/s2

where
vals == Absjfn(c, type)

va's 2 == Abs fn(c , type)

Taking the tuple induction step this time, the theorem to be proved is as follows:

c1 , c2 , c : Cover; vals1, vals2 , vals : IP Value; type : Type

F 1, F2 : F (Cover x Cover); c1 = pair F1 ; c2 = pair F2

All; Al2; Al; type1 = type 2 = type

CCTuples1,; CCTuples2

hdtype, tlype : Type; hdtype = RD type A titype = TL type
V c, : dom F1 ; c2 : dom F2 ; type : Type; c : Cover
[type = hdtype
• Increment_property
V c1 : ran F1 ; c2 : ran F2 ; type : Type; c : Cover
I type = iltype
• Increment_property
i.

UTuples 4 c # C2 4 vals # va/s2

This theorem may be established by showing that 3 v." vals] • v g va/s2. As with all the
tuple cases, this is not particularly easy to prove although the existential witness is
easy to find.

To summarise for the union case, five proofs are required, as listed in section 5.2, of
which the second and fourth are immediate. The first proof breaks down into the
intersection, difference and union cases, each based on a cross product of Cover each
requiring the proof of 16 subsidiary cases, 48 in all. There will also be 2 subsidiary
lemmas for manipulating the type in the induction property, just as for coverage. The
third and fifth theorems also give rise to 16 cases so there are 82 subsidiary goals to
establish. Of these the tuple cases are relatively complicated and would need to be
broken down into further goals.

. . . . ,,-,,,,n, , n i in a a t i ana IAl

7 The implementation

This section gives the text of the Algol68 module which implements the design
specified. It is included to give some idea of the formal distance between the design
specification derived in section 5 and an actual implementation language. The
implementation is part of an ML interpreter and so covers the aspects which were
simplified in the design specification (apart from the exact treatment of the special
constants). Th- main structure of the implementation follows fairly closely that of
the specification inasmuch as it is easy to relate the parts of the implementation to
the parts of the specification. The Z datatypes Pattern and Cover are implemented by
the Algol68 PATTERN and COVER respectively and the coverage and union functions have
the same name. The checking operation, Checkop_2, is implemented by the Algol68
addpatt and the test in the final operation is given by the procedure comp. However, the
formal distance, in the sense of the theorems necessary to demonstrate the
refinement, is still large.

In particular, further steps of data refinement have been undertaken. The constructor
coverage measure, which in Z has been represented by CON -) Cover, has been data
refined into N -W Cover, which is implemented as the Algol68 array of cover, []COVER.

In addition, the implementation uses a total function from the set of constructors in the
datatype, rather than a partial function whose domain is the set of constructors
already encountered. In the implementation, the constructors which have not been
encountered are given an incomplete coverage.

Similarly, for tuples, the Z representation of pair (< I (Cover x Cover))) is implemented
by the Algol68 mode PAIR = STRUCT (COVER a, b, REF PAIR next). In this case the
abstract sets are being implemented by linked lists, with a natural implementation
of universal quantifiers in terms of loops.

in the union function, there has been some operation refinement of the test for
completion, the calculation of the remainder coverage and the test for whether the
coverage has changed. These are all done during the execution of the main loop in
the function, rather than sequentially as would result from a simple-minded
implementation of the specification. As a result the union function delivers both the
new coverage and an indication of whether it has changed.

ml.testmatch:

ml_modes :Module

mlruntime :Module

mlcomp_ mode :Module

MODE COVER,
CONSTRUCT = STRUCT(REF[]COVER cvs),

PAIR - STRUCT(COVER a, b, REF PAIR next),
COVER UNION(BOOL, {TRUE - complete, FALSE = incomplete}

REF CONSTRUCT,

REF PAIR

44

REF PAIR no_pair = NIL;

PROC construct = (REF[]COVER cvs)COVER:

(HEAP CONSTRUCT c; cvs OF c :- cvs; c);

PROC incomp = (COVER c)BOOL: CASE c IN (BOOL b): NOT b OUT FALSE ESAC;
{test for incomplete cover}

PROC comp = (COVER c)BOOL: CASE c IN (BOOL b): b OUT FALSE ESAC;
{test for complete cover}

PROC coverage = (PATTERN patt)COVER:
CASE patt
IN (VOID): TRUE {Unit constant is complete}

(BOOL b): {Boolean special constantsi

(HEAP[l:2]COVER valcover := (FALSE, FALSE);

valcover[ABS b + i] := TRUE;

construct (valcover)

(INT): FALSE {integer indicates special constant which is incomplete,

(SHORT REAL): FALSE {...}
(LINE): FALSE {...}

(VAR): TRUE {Variables are complete}

(REF CONSTANT c):
(REF TYCON tycon = tycons[tyconno OF c];

INT nocons nocons OF tycon;
IF nocons /= 1

THEN HEAP[I:nocons]COVER valcover;

FOR i TO nocons DO valcover[i] := FALSE OD;
valcover[consno OF c] := TRUE;

construct(valcover)
ELSE {datatype contains only one value, and this must be it}

TRUE
F1

(REF CONSPATT cp):
(REF TYCON tycon - tycons[tyconno OF cp];

INT nocons - nocons OF tycon;
COVER parcover - coverage(par OF cp);
IF incomp(parcover) {test incomplete)

THEN FALSE
ELIF nocons - 1
ANDTH comp(parcover) {test completel

THEN TRUE
ELSE HEAP[1 :nocons]COVER valcover;

FOR i TO nocons DO valcover[i] :- FALSE OD;

valcoverconano OF cp] :- parcover;

construct (valcover)
FI
)

(REF REFPATT rp):
coverage(patt OF rp) {as there is only one ref constructor}

45

(REF LAYERED 1):
coverage(patt OF 1) {the equivalent patterni

(REF LISTPATT lp):
(HEAP[I:2]COVER valcover (FALSE, FALSE);

IF ip IS nolistpatt {test nil}

THEN valcover[l] := TRUE

ELSE {:: is a constructor of a 2-tuple: ('a * 'a list) -> 'a list)

HEAP PAIR pair := (coverage(hd OF lp), coverage(tl OF lp), NIL);
valcover[2] := pair

FI;
construct (valcover)

(REF TUPLEPATT tp):
(REF VECTOR[]PATTERN patts = patts OF tp; INT size UPB patts;

COVER a = coverage(patts[l]),

b = IF size = 2

THEN coverage (patts[2)

ELSE TUPLEPATT tltp; patts OF tltp patts[2:];

coverage (tltp)
FI;

HEAP PAIR :- (a, b, NIL)

ESAC;

PROC intersection = (COVER cl, c2)COVER:
CASE c2
IN (BOOL b): IF b THEN cl ELSE FALSE FI
OUSE cl
IN (BOOL b): IF b THEN c2 ELSE FALSE FI

{the case elements above implement IPrimitive,

the next one implements IConstructions}

(REF CONSTRUCT csl):
CASE c2
IN (REF CONSTRUCT cs2):

(BOOL incomplete := TRUE;
(]COVER fl = cvs OF csl, f2 = cvs OF cs2;

INT size = UPB fl;

HEAP[l :size]COVER f;

FOR i TO size
DO IF NOT incomp(f[i] := intersection(fl[i], f2[i]))

THEN incomplete :- FALSE
FI

OD;
IF incomplete THEN FALSE ELSE construct(f) FI

ESAC
(REF PAIR pl): {This element implements ITuples}

CASE c2
IN (REF PAIR p2):

(REF PAIR ppl, pp2 :- p2, {pointers int. the lists}

fprime :- NIL; {the resultj

WHILE pp2 ISNT nopair {test not end of list}

DO ppl :- pl;
WHILE ppl ISNT no_pair
DO COVER a - intersection(a OF ppl, a OF pp2),

-- " -- - i~l l Il a i If mi A m [

b - intersection(b OF ppl, b OF pp2);
IF NOT incomp(a)
ANDTH NOT incomp(b)
THEN fprime := HEAP PAIR := (a, b, fprime)
FI;
ppl :- next OF ppl

OD;
pp2 :- next OF pp2

OD;

IF fprime IS no_pair
THEN FALSE
rLSE fprime
F1

ESAC
ESAC;

PROC difference = (COVER cl, c2)COVER:
CASE c2
IN (BOOL b) : IF b THEN FALSE ELSE cl FI
OUSE cl
IN (BOOL b):

IF b
THEN CASE c2

IN (REF CONSTRUCT cs2):
{cl complete c2 constructor}

(REF[]COVER f2 = cvs OF cs2;

[1:UPB f2]COVER fl;

FOR i TO UPB fl DO fl[i] := TRUE OD;

difference (construct (fl), c2)

(REF PAIR p2):
{cl complete c2 tuple}

(PAIR pl := (TRUE, TRUE, NIL);
difference(pl, c2)

ESAC
ELSE FALSE

FI
(REF CONSTRUCT csl):

CASE c2
IN (REF CONSTRUCT cs2):

{DConstructions}

(BOOL incomplete := TRUE;
REF[]COVER fl - cvs OF csl, f2 = cvs OF cs2;

INT size = UPB fl;
HEAP[l :size]COVER f;

FOR i TO size
DO IF NOT incomp(f[i] :- difference(fl[i], f2[i]))

THEN incomplete :- FALSE
F1

OD;
IF incomplete THEN FALSE ELSE construct(f) F1

ESAC
(REF PAIR pl):

CASE c2
IN (REF PAIR p2):

---- I' --"a i m mmma allm IAI

(REF PAIR ppl, pp2 := p2, {pointers into the lists}

fprime := NIL; {the result)

WHILE pp2 ISNT no_pair {test not end of list}

DO ppl := pl;
WHILE ppl ISNT nopair
DO COVER x = difference(a OF ppl, a OF pp2),

y - difference(b OF ppl, b OF pp2),
z - intersection(a OF ppl, a OF pp2);

IF NOT incomp(x)
THEN fprime := HEAP PAIR := (x, b OF ppl, fprime)
FI'
IF NOT incomp(y) ANDTH NOT incomp(z)
THEN fprime := HEAP PAIR (z, y, fprime)
FI;
ppl := next OF ppl

OD;
pp2 := next OF pp2

OD;
IF fprime IS no_pair
THEN FALSE
ELSE fprime
F1

ESAC
ESAC;

MCOE UNIONRES = STRUCT(COVER c, BOOL differs);
{This is what union will actual deliver. The boolean says whether c differs
from c2}

PROC union = (COVER cl, c2)UNIONRES:
CASE c2
IN (BOOL b):

IF b
THEN {c2 complete, result unchanged} (TRUE, FALSE)

ELSE 42 in.cmplete, result changed unless cl incomplete}

(el, NOT incomp(cl))
FI

OUSE cl
IN (BOOL b):

IF b
THEN {cl complete, result unchanged unless c2 complete}

(TRUE, NOT comp(c2))
ELSE {cl incomplete, result unchanged} (c2, TRUE)

FI
(REF CONSTRUCT csl):

CASE c2
IN (REF CONSTRUCT cs2):

{UConstructions}

(BOOL complete :- TRUE, changed :- FALSE;
[]COVER fl - cvs OF csl, f2 - cvs OF cs2;

INT size - UPB fl;
HEAP[I :size}COVER f;

FOR i TO size
DO UNIONRES res :- union(fl[i], f2[i]);

changed := changed OR differs OF res;
IF NOT comp(f[i] :- c OF res)

4i

THEN complete := FALSE
F1

OD;

IF complete
THEN {it must have changed} (TRUE, TRUE)

ELIF changed
THEN (construct(f), TRUE)
ELSE (c2, FALSE)
F1

ESAC
(REF PAIR pl):

CASE c2
IN (REF PAIR p2):

{UTuples}

(REF PAIR ppl, pp2 := p2, {pointers into the lists}

fprime := NIL; {the resulti

BOOL changed := FALSE;
COVER completed := FALSE;
PROC add = (COVER a, b)VOID:

(changed := TRUE;
IF comp(b)
THEN completed := c OF union(a, completed)
ELSE fprime := HEAP PAIR := (a, b, fprime)
FI

WHILE pp 2 ISNT nopair {test not end of list}

DO ppl := pl;

COVER remainder := a OF pp2;
WHILE ppl ISNT nopair
DO COVER x = difference(a OF ppl, a OF pp2),

y = intersection(a OF ppl, a OF pp2);
UNIONRES res = union(b OF ppl, b OF pp2);
COVER z = c OF res;

IF differs OF res
THEN IF NOT incomp(x)

THEN add(x, b OF ppl)
FI;
IF NOT incomp(y) ANDTH NOT incomp(z)
THEN add(y, z)
FI

FI;
remainder := difference(a OF pp2, a OF ppl);
ppl :- next OF ppl

OD;
IF NOT incomp(remainder) THEN add(remainder, b OF pp2) FI;
pp2 :- next OF pp2

OD;

IF NOT changed
THEN (c2, FALSE)
ELIF comp(completed)
THEN (TRUE, TRUE)
ELSE IF NOT incomp(completed)

THEN fprime :- HEAP PAIR := (completed, TRUE, fprime)
FI;
(fprime, TRUE)

.... . .. m --- ,m~a ato i i i~iH i il I

FI

E SAC
ESAC;

PROC addpatt = (PATTERN p, COVER c2)COVER:
{Equivalent to Check op_21

(COVER cl coverage (p);
UNIONRES res - union(cl, c2);
IF NOT incomp(cl) ANDTH NOT differs OF res
THEN warn ("This pattern is redundant")
FI;
c OF res

KEEP COVER, coverage, union, addpatt, comnp
FINISH

8 Conclusions

Before discussing the implications of this case study, it is worth emphasising the
fact that this report is about refinement, not about the precise form of the pattern
matching algorithm to use in ML. Other studies, for example Baudinet and
MacQueen [1987], Peyton Jones (1987], give algorithms for compiling pattern
matching expressions, but the problem of demonstrating the correctness of the
algorithm still remains. Given this approach to the formal development of software
therefore, the questions arise as to whether it is actually helpful to the developers
and whether it actually convinces the evaluators.

Taking the developers point of view first of all, when reading this case study, one
motors along quite happily through sections 1 to 4 and then the going gets rough in
section 5 and finally one gets bogged down in section 6. Section 5 is difficult
because the problem is difficult. Although the intuitive idea of an exhaustive check
is clear it is extremely hard to think of a general algorithm which convincingly
copes with all cases. In addition, intuitively one thinks that the type structure must
play a relatively minor role in the algorithm, but equally it must be present in the
specification and the problem is to see what assumptions can be made about it.
Given that, the difficulty in section 5 is quite understandable and this approach,
namely the development of the abstraction invariant and its use in calculating the
implementation required, is a sensible way of designing software. Note incidentally,
that the "bottom-up" approach of designing the software and then attempting to show
that it satisfies the specification is dangerous. Our work on this study was impeded
by several months fruitlessly trying to prove that our intuitive algorithm was correct
when it was not.

Given the investment in abstract design, represented by sections 1 to 5, the
implementation becomes very easy. The implementation in section 7 was written,
tested and debugged in 1 day. (Debugged? Yes, CTS wrote TRUE instead of FALSE
and forgot to move on the list pointers in some of the loops. These faults will not be
found by the formal method without much more formalism, but are relatively easily
found by testing.) One can argue therefore that abstract algorithm design is cost
effective as a production method, but this does not apply to the formal proof aspects
detailed in section 6. This is because the actual development of the proof is
demanding. And it is demanding because it is boring and it is boring because it does
not lead to a much greater insight into the problem.

From the evaluator's point of view one can take a similar warm view to the process of
abstract algorithm design exemplified by the first 5 sections, because these help the
evaluator to understand the algorithm. Indeed, it is probably the only approach from
which one can derive a convincing argument for correctness and consequently the
only approach likely to satisfy an independent evaluation. It is however not clear the
extent to which the proof process adds further assurance: at some points it is hard to
see what is going on through all the detail of the formalism. Furthermore, it seems
inevitable that the development will be informal at some stage, simply by reason of
the number of proofs required. Section 6 covers only an outline of the major proof

steps so one could anticipate a proof document for what is a small part of an ML
compiler being perhaps 10 times larger than this section. Moreover, this section is
notable for what is omitted rather than what is included. At the higher level the
formalisation of how the compiling functions are called has been omitted and at the
lower level, there is at least as much operation refinement required to end up with
the implementation language as the data refinement needed to end up with the
design. The sheer number of proof steps generated makes it seem inconceivable that
the pattern matching algorithm in an ML compiler will ever be carried out fully
formally and mechanically checked.

It is not however clear that mechanical proof is always called for in the very highest
levels of assurance. Using the DoD's evaluation criteria as an example [DoD 1985], one
could equate the development recorded in sections 1 to 5 with the assurance level
contained in the Al criteria. The specification corresponds to the policy model;
section 5 corresponds to the formal top level specification; the combination of
formal and informal techniques showing the correspondence with the specification
is contained in sections 3 to 5. The formalism has been mechanically checked for
correct syntax and well-typing: the question is, is that enough to satisfy Al
assurance, or the equivalent UK confidence level 6, assured design.

Rather than answer this contentious question directly, we shall discuss two related
ones, namely, whether the proof process of section 6 materially adds to the
confidence in the software, and whether it is necessary to supply the missing
formalism. Taking the latter question first, we do not believe that much would be
gained by formalising the syntax analyser part of an ML compiler and relating it to
the compiling operation specifications so that the pre-conditions for these operations
were derived formally, rather than infonnally as has been done here. Syntax analysis
is normally treated with a special purpose tool anyway and the pre-conditions are
relatively easily checked by eye. The further refinement involved in arriving at the
Algol68 implementation is more debateable. For the most part this is
straightforward although one would like to see some code level verification of the
loops in the union function. Note that the design specification is suggestive of the
annotations which would be necessary for verification condition generation by tools
such as MALPAS and Gypsy.

Whether the proof in general is adding assurance is a more subjective judgement. To
give it an appropriate subjective context one could rephrase the question thus. Given
that one is going to entrust one's life to a piece of software, which will be written to a
fixed price by contractor A and evaluated to a fixed price by contractor B, what
should A arid B be required to do? Within this context the proof process is valuable
because it gives an objective test for satisfaction. Mechanical aids are important in
this, but their use should not cloud the understanding of the proof in the evaluator's mind.
Mechanical proof should support the kind of informal proof common in mathematics,
rather than supplanting it. In practice, the theorems contained in section 6 are at a
level of detail which si,ould be within the range of a mechanical theorem prover and
at which an evaluator could well take the mechanical proof on trust.

52

Even with mechanical aids, it is unlikely that realistic problems will be capable of
having the proof of all the theorems exhibited being carried out mechanically. For
this particular case study, going down to this level of detail gives rise to at least a
100 theorems. Requiring the proof of all these theorems to be carried out
mechanically for certification would be unreasonably costly. However a selective
approach is sensible and enables the level of assurance to be related to the amount
of effort spent in verification. For example, in this case study, the theorems are
arranged in a tree: the refinement obligations are expressed by two theorems, which
are broken down into 9 which expand into the 100 or so. A satisfactory technique
would be to prove that the 9 theorems entailed the refinement obligations, thus
demonstrating that all cases had been considered and then (o take one of the
branches of the proof tree, perhaps for the harder tuple case, cown to the leaves of
the tree. Even this might be too onerous and an evaluator could be satisfied with
proving some, but not all, of the theorems on the way, simply in order to make the
most cost-effective use of his time. A mechanical prover could help here by proving
certain of the easier cases, so that these could simply be accepted by the evaluator.

To summarise:

* The formal development process, in particular the key step of exhibiting the
abstraction invariant and using it to develop the abstract algorithm design, is a
useful and cost-effective technique for developing software, quite apart from its
use in demonstrating correctness.

" Formal proof adds to the assurance, but complete formality obscures. Proof
needs to be undertaken within a context using both formal and informal
elements. The structure of the proof and the way it is delivered to an evaluator
(the proof document) ought to follow intuitive, informal, proof methods.

References

DoD (1985). Department of Defense Trusted Computer System Evaluation Criteria,
National Computer Security Center, Fort Meade, Maryland, USA.

Baudinet M and MacQueen D (1987). Tree pattern matching for ML, in Functional
programming languages and computer architectures, Gilles Kahn (ed), Lecture Notes
in Computer Science 274, Springer Verlag.

Gordon M J C, Milner R and Wadsworth C P (1979). Edinburgh LCF, Lecture Notes
in Computer Science 78, Springer Verlag.

Harper R, Milner R and Tofte M (1988). The definition of standard ML version 2.
Laboratory for the Foundations of Computer Science, report ECS-LFCS-88-62,
University of Edinburgh.

Hayes I, (1987). Specification case studies, Prentice Hall International series in
Computer Science, 1987.

Jones, C B (1986). Systematic software development using VDM, Prentice-Hall.

Morgan C C, Robinson K A (1987). Specification statements and refinement, IBM
Journal of Research and Development, 31, 5.

Morgan C C (1988). The specification statement, TOPLAS 10, 3.

Paulson L C (1987). Logic and computation. Cambridge tracts in theoretical
computer science 2, Cambridge University Press.

Peyton Jones S L (1987). The implementation of functional programming languages,
Prentice Hall International series in Computer Science.

Spivey, J M (1988). Understanding Z: a specification language and its formal
semantics, Cambridge University Press.

Sufrin, B (1983). Formal system specification - notation and examples, in Tools and
Notations for Program Construction (Neel ed.), Cambridge University Press.

DOCUM[NI CONTROL SHEET

Owe-a'l se-uity class .ication of sheel UNCLASSIFIED
,..,.....,

(As far as pcsstle this sheet should contain only unclassified informaiion. 11 it is necessary ic e'e,
classified imforeatior, the box concerned oust be aked t indicaie the classification e; (F) (C) or (C)

1. DFIC Reference (i' known) 2. Originator's Reference 3. Agency Reference 4. Reor! Secu, ,
Report 89004 1 UIC Cas)a

5. Orign ator's Code (if 6. Originator (Corporate Author) lame and Location
known) ROYAL SIGNALS & RADAR ESTABLISHMENT

7784000 ST ANDREWS ROAD, GREAT MALVERN
WORCESTERSHIRE WR14 3PS

5a. Scenso in; Agency's 6a. Sponsoring Agency (Contract Authority) Nape and Loca'ion
Code (if known)

7. T;tle

Pattern matching in ML: a case study in refinement

7a. Title it Foreig, Language (in the case of translations)

7c. Fresetle4 ai (fc cori'e-ence naers) Title. place and date of conference

E. A,;t r 1 Swrnare, in:tials 9(a) A6t-or 2 9(t) Authors 3,4... 10. Date D:. rel

Macdonald L Randell G P Sennett C T 1989.05 54

11. Contract kumte, 12. Period 13. Project 14. Other Reference

15. Distribution statese-t

UNL T- :D

Descriptors (or keywrds)

continue on separate piece of pioer

Abatract

This report is a case study in data refinement, that is the process of taking a
formal specification written in terms of abstract values and converting it into
a concrete form suitable for implementation. The case study takes a non-trivial
problem, namely pattern matching in the language ML, and presents the refinement
process and proof obligations incurred concluding with an implementation in Algol
68. The report concludes with a discussion of the strengths and weaknesses of
the formal development process. ,

580!/ 8

